ESTIMATING MOTOR PARAMETERS

Part 4

AGENDA

- Assumptions;
- Modeling of PMSM motor;
- Estimate actual motor parameters;
- Example;

ASSUMPTIONS

- Stator windings produce sinusoidal MMF;
- Space harmonics in the air-gaps are neglected;
- Air-gap reluctance have a constant \& sinusoidally varying component;

ASSUMPTIONS

- Balanced 3-phase supply voltage;
- Eddy currents \& Hysteresis effects neglected;

MODELING OF PMSM MOTOR

- Stator reference axis for phase-A is chosen in the direction of maximum MMF when a positive phase A current is maximum;
- Stator self inductances are maximum when rotor q-axis is aligned with the particular phase;
- Mutual inductances are maximum when rotor qaxis is midway between two phases;

MODELING OF PMSM MOTOR

$$
\begin{gathered}
\text { Self } \\
\text { Inductance } \begin{array}{c}
\text { Leakage } \\
\text { Inductance }
\end{array} \begin{array}{c}
\text { Magnet } \\
\text { Interaction }
\end{array} \\
L_{a a}=L_{s 0}+L_{s 1}+L_{x} \cos (2 \theta) \\
L_{b b}=L_{s 0}+L_{s 1}+L_{x} \cos (2 \theta+120) \\
L_{c c}=L_{s 0}+L_{s 1}+L_{x} \cos (2 \theta-120) \\
L_{a b}=(-1 / 2) L_{s 0}+L_{x} \cos (2 \theta-120) \\
L_{b c}=(-1 / 2) L_{s 0}+L_{x} \cos (2 \theta) \\
L_{c a}=(-1 / 2) L_{s 0}+L_{x} \cos (2 \theta+120)
\end{gathered}
$$

2θ is the terms introduced due to saliency

When q-axis is aligned with the particular phase, self-inductance is maximum.

When q-axis is midway between phases, mutualinductance is maximum.

MODELING OF PMSM MOTOR

$$
\begin{aligned}
& V_{a}=R_{s} I_{a}+p \lambda_{a} \\
& V_{b}=R_{s} I_{b}+p \lambda_{b} \\
& V_{c}=R_{s} I_{c}+p \lambda_{c}
\end{aligned}
$$

MODELING OF PMSM MOTOR

$$
\begin{aligned}
& \lambda_{a}=L_{a a} I_{a}+L_{a b} I_{b}+L_{a c} I_{c}+\lambda_{m a} \\
& \lambda_{b}=L_{b b} I_{a}+L_{b b} I_{b}+L_{b c} I_{c}+\lambda_{m b} \\
& \lambda_{c}=L_{c a} I_{a}+L_{c b} I_{b}+L_{c c} I_{c c}+\lambda_{m c}
\end{aligned}
$$

MODELING OF PMSM MOTOR

$$
\begin{aligned}
\lambda_{m a} & =\lambda_{m} \cos (\theta) \\
\lambda_{m b} & =\lambda_{m} \cos (\theta-120) \\
\lambda_{m c} & =\lambda_{m} \cos (\theta+120)
\end{aligned}
$$

MODELING OF PMSM MOTOR

Park's transformation

Beware of θ

MODELING OF PMSM MOTOR

$$
\begin{aligned}
& V_{q}=R_{s} I_{q}+p \lambda_{q}+\omega \lambda_{d} \\
& V_{d}=R_{s} I_{d}+p \lambda_{d}-\omega \lambda_{q}
\end{aligned}
$$

MODELING OF PMSM MOTOR

$$
\begin{aligned}
& \lambda_{q}=L_{q} I_{q} \\
& \lambda_{d}=L_{d} I_{d}+\lambda_{m}
\end{aligned}
$$

Synchronous inductances are effective inductances seen by phase winding during balanced operation.

MODELING OF PMSM MOTOR

$$
\begin{aligned}
& L_{q}=(3 / 2)\left(L_{s 0}+L_{x}\right)+L_{s 1} \\
& L_{d}=(3 / 2)\left(L_{s 0}-L_{x}\right)+L_{s 1}
\end{aligned}
$$

MODELING OF PMSM MOTOR

$$
\begin{aligned}
V_{q} & =\left(R_{s}+L_{q} p\right) I_{q}+\omega L_{d} I_{d}+\omega \lambda_{m} \\
V_{d} & =\left(R_{s}+L_{d} p\right) I_{d}-\omega L_{q} I_{q}
\end{aligned}
$$

MODELING OF PMSM MOTOR

- Synchronous inductances are effective inductances under balanced conditions;

$$
\begin{aligned}
& P_{i}=(3 / 2)\left\{V_{q} I_{q}+V_{d} I_{d}\right\} \\
& P_{o}=(3 / 2)\left\{\omega \lambda_{d} I_{q}-\omega \lambda_{q} I_{d}\right\} \\
& T=\xlongequal[\downarrow]{(3 / 2) .(P / 2)\left\{\lambda_{m} I_{q}\right.}+\underset{\downarrow}{\left.\left(L_{d}-L_{q}\right) I_{d} I_{q}\right\}} \\
& \text { Mutual reaction Torque } \\
& \text { Reluctance Torque } \\
& \text { Lq>Ld, Hence Id must } \\
& \text { be -ve to produce }
\end{aligned}
$$

MODELING OF PMSM MOTOR

- Equivalent circuit of PMSM:

MODEEING OF PMSM MOTOR

MODELING OF PMSM MOTOR

MODELING OF PMSM MOTOR

Large signal model of Half bridge inverter

AADEEING OF PMSM MOTOR

MODELING OF PMSM MOTOR

SIMULATION RESULTS

SIMULATION RESULTS

SIMULATION RESULTS

MODELING OF PMSM MOTOR

$$
\begin{array}{cc}
\left|V_{s}\right|=\sqrt{V_{q}{ }^{2}+V_{d}} & I_{q}=I_{s} \cos \left(\theta_{m}\right) \\
\left|I_{s}\right|=\sqrt{I_{q}{ }^{2}+I_{d}{ }^{2}} & I_{d}=-I_{s} \sin \left(\theta_{m}\right) \\
T=(3 / 2) .(P / 2)\left\{\lambda_{m} I_{s} \cos \left(\theta_{m}\right)+0.5\left(L_{d}-L_{q}\right) I_{s}{ }^{2} \sin \left(2 \theta_{m}\right)\right\} \\
T=(3 / 2)(P / 2)\left(\lambda_{m} I_{s} \cos \left(\theta_{m}\right)\right) &
\end{array}
$$

Zero Current 90 degree Rotor Position

Shaded Plot ($\mathrm{Wb} / \mathrm{mm}$)
$\begin{array}{lllllllll}-1.5 e-05 & -1.19 e-05 & -8.92 e-06 & -5.9 e-06 & -2.88 \mathrm{e}-06 & 1.38 \mathrm{e}-07 & 3.16 e-06 & 6.17 e-06 & 9.19 e-06\end{array}$
 distribution is prohibited.

Zero Corrent

LUMPED PARAMETER ANALYSIS

Zero Rotor Position +45 degree phase advance			
	SPM - 180 degree Magnet Span	SPM -90 degree magnet span	IPM - Laterial Magnets

ESTIMATION OF PARAMETERS

- Resistance:
- Line to line R is measured with an RLC meter;
- Half the value gives $\mathrm{R} /$ phase;
- Neglecting skin effect R is given by:

- $R t$ is the value at different temperature;
- K=243.5 constant of the material (copper);

ESTIMATION OF PARAMETERS

- Synchronous Inductances La \& Lq:

$$
\begin{aligned}
V & =\left\{(3 / 2) R_{s}+(3 / 2) L_{q} p\right\} I_{q} \\
L_{q} & =(2 / 3) L\left(\theta=0^{\circ}\right) \\
L_{d} & =(2 / 3) L\left(\theta=90^{\circ}\right)
\end{aligned}
$$

ESTIMATION OF PARAMETERS

ESTIMATION OF PARAMETERS

Circuit for general Inductance
Measurement

Lock the rotor, keep the currents balanced and measure inductance for various values of current and position. Position is simulated by different current magnitudes.

ESTIMATION OF PARAMETERS

- Permanent magnet flux linkage;

$$
\lambda_{m}=\sqrt{(2 / 3)} \cdot V_{n l} / \omega
$$

- Where $\omega=\omega_{m}(P / 2)$;
- BEMF const $\mathrm{Ke}_{\mathrm{e}}=\mathrm{V}_{\mathrm{n}} / \omega$;
- Maintaining orthogonal at stand still λ_{m} can be found as: $\quad \lambda_{m}=(2 / 3) .(2 / P) T / I_{s}$
- Where Is is peak current value;

ESTIMATION OF PARAMETERS

- Let Lqo, Ldo \& $\lambda_{m o}$ be the values in the linear region;
- In linear region $|\mathrm{la}|<|\mathrm{lo}|$;
- But at high currents $|\mathrm{la}|>|\mathrm{lo}|$;
- Lq is subjected to saturation;
- Ld \& λ_{m} are subjected to armature reactions;
- At high currents Frolich's formula can be used for calculating La, Lq \& λ_{m};

ESTIMATION OF PARAMETERS

- Frolich's formula:

$$
\begin{aligned}
& L_{q}(I)=L_{q 0}\left(a+I_{0}\right) /\left(a+\left|I_{q}\right|\right) \\
& L_{d}(I)=L_{d 0}\left(b+I_{0}\right) /\left(b+\left|I_{q}\right|\right) \\
& \lambda_{m}(I)=\lambda_{m 0}\left(b+I_{0}\right) /\left(b+\left|I_{q}\right|\right)
\end{aligned}
$$

ESTIMATE

- $P=6$;
- RI-I=1.9 9 at 25 degrees celsius;
- Vnl=106.8V at 1000 rpm ;
- Orthogonal Torque $=17.6 \mathrm{Nm}$ at 10 A rms \& 31 Nm at 20A rms;
- $L(0)=21.15 \mathrm{mH}$ up to 10 A rms \& 16.08 mH at 20A rms;
- $L(90)=12.20 \mathrm{mH}$ up to 10 A rms \& 10.73 mH at 20A;

HINT

- Ld=8.13mH;
- $\mathrm{Lq}=14.1 \mathrm{mH}$;
- $\lambda \mathrm{m}=0.2765 \mathrm{~Wb}-\mathrm{T}$;
- $\mathrm{Rs}=0.95 \Omega$;

Calculate \mathbf{a} and b

